Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Cell Biol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714853

RESUMO

During brain development, neural progenitors expand through symmetric divisions before giving rise to differentiating cell types via asymmetric divisions. Transition between those modes varies among individual neural stem cells, resulting in clones of different sizes. Imaging-based lineage tracing allows for lineage analysis at high cellular resolution but systematic approaches to analyse clonal behaviour of entire tissues are currently lacking. Here we implement whole-tissue lineage tracing by genomic DNA barcoding in 3D human cerebral organoids, to show that individual stem cell clones produce progeny on a vastly variable scale. By using stochastic modelling we find that variable lineage sizes arise because a subpopulation of lineages retains symmetrically dividing cells. We show that lineage sizes can adjust to tissue demands after growth perturbation via chemical ablation or genetic restriction of a subset of cells in chimeric organoids. Our data suggest that adaptive plasticity of stem cell populations ensures robustness of development in human brain organoids.

2.
PLoS Comput Biol ; 20(4): e1012054, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38648250

RESUMO

Neural organoids model the development of the human brain and are an indispensable tool for studying neurodevelopment. Whole-organoid lineage tracing has revealed the number of progenies arising from each initial stem cell to be highly diverse, with lineage sizes ranging from one to more than 20,000 cells. This high variability exceeds what can be explained by existing stochastic models of corticogenesis and indicates the existence of an additional source of stochasticity. To explain this variability, we introduce the SAN model which distinguishes Symmetrically diving, Asymmetrically dividing, and Non-proliferating cells. In the SAN model, the additional source of stochasticity is the survival time of a lineage's pool of symmetrically dividing cells. These survival times result from neutral competition within the sub-population of all symmetrically dividing cells. We demonstrate that our model explains the experimentally observed variability of lineage sizes and derive the quantitative relationship between survival time and lineage size. We also show that our model implies the existence of a regulatory mechanism which keeps the size of the symmetrically dividing cell population constant. Our results provide quantitative insight into the clonal composition of neural organoids and how it arises. This is relevant for many applications of neural organoids, and similar processes may occur in other developing tissues both in vitro and in vivo.


Assuntos
Organoides , Organoides/citologia , Humanos , Linhagem da Célula/fisiologia , Biologia Computacional , Células-Tronco Neurais/citologia , Células-Tronco Neurais/fisiologia , Processos Estocásticos , Modelos Biológicos , Neurônios/fisiologia , Neurônios/citologia , Encéfalo/citologia , Encéfalo/fisiologia , Proliferação de Células/fisiologia , Neurogênese/fisiologia
3.
Biol Chem ; 405(1): 13-24, 2024 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-37697643

RESUMO

Advances of in vitro culture models have allowed unprecedented insights into human neurobiology. At the same time genetic screening has matured into a robust and accessible experimental strategy allowing for the simultaneous study of many genes in parallel. The combination of both technologies is a newly emerging tool for neuroscientists, opening the door to identifying causal cell- and tissue-specific developmental and disease mechanisms. However, with complex experimental genetic screening set-ups new challenges in data interpretation and experimental scope arise that require a deep understanding of the benefits and challenges of individual approaches. In this review, we summarize the literature that applies genetic screening to in vitro brain models, compare experimental strengths and weaknesses and point towards future directions of these promising approaches.


Assuntos
Encéfalo , Testes Genéticos , Humanos
5.
Nature ; 621(7978): 373-380, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37704762

RESUMO

The development of the human brain involves unique processes (not observed in many other species) that can contribute to neurodevelopmental disorders1-4. Cerebral organoids enable the study of neurodevelopmental disorders in a human context. We have developed the CRISPR-human organoids-single-cell RNA sequencing (CHOOSE) system, which uses verified pairs of guide RNAs, inducible CRISPR-Cas9-based genetic disruption and single-cell transcriptomics for pooled loss-of-function screening in mosaic organoids. Here we show that perturbation of 36 high-risk autism spectrum disorder genes related to transcriptional regulation uncovers their effects on cell fate determination. We find that dorsal intermediate progenitors, ventral progenitors and upper-layer excitatory neurons are among the most vulnerable cell types. We construct a developmental gene regulatory network of cerebral organoids from single-cell transcriptomes and chromatin modalities and identify autism spectrum disorder-associated and perturbation-enriched regulatory modules. Perturbing members of the BRG1/BRM-associated factor (BAF) chromatin remodelling complex leads to enrichment of ventral telencephalon progenitors. Specifically, mutating the BAF subunit ARID1B affects the fate transition of progenitors to oligodendrocyte and interneuron precursor cells, a phenotype that we confirmed in patient-specific induced pluripotent stem cell-derived organoids. Our study paves the way for high-throughput phenotypic characterization of disease susceptibility genes in organoid models with cell state, molecular pathway and gene regulatory network readouts.


Assuntos
Transtorno do Espectro Autista , Encéfalo , Deficiências do Desenvolvimento , Organoides , Análise da Expressão Gênica de Célula Única , Humanos , Transtorno do Espectro Autista/complicações , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/patologia , Transtorno Autístico/complicações , Transtorno Autístico/genética , Transtorno Autístico/patologia , Encéfalo/citologia , Encéfalo/metabolismo , Linhagem da Célula/genética , Cromatina/genética , Proteína 9 Associada à CRISPR/metabolismo , Sistemas CRISPR-Cas , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Edição de Genes , Mutação com Perda de Função , Mosaicismo , Neurônios/metabolismo , Neurônios/patologia , Organoides/citologia , Organoides/metabolismo , RNA Guia de Sistemas CRISPR-Cas , Transcrição Gênica
6.
Sci Adv ; 8(44): eabo7247, 2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36332029

RESUMO

The HUSH (human silencing hub) complex contains the H3K9me3 binding protein M-phase phosphoprotein 8 (MPP8) and recruits the histone methyltransferase SETDB1 as well as Microrchidia CW-type zinc finger protein 2 (MORC2). Functional and mechanistic studies of the HUSH complex have hitherto been centered around SETDB1 while the in vivo functions of MPP8 and MORC2 remain elusive. Here, we show that genetic inactivation of Mphosph8 or Morc2a in the nervous system of mice leads to increased brain size, altered brain architecture, and behavioral changes. Mechanistically, in both mouse brains and human cerebral organoids, MPP8 and MORC2 suppress the repetitive-like protocadherin gene cluster in an H3K9me3-dependent manner. Our data identify MPP8 and MORC2, previously linked to silencing of repetitive elements via the HUSH complex, as key epigenetic regulators of protocadherin expression in the nervous system and thereby brain development and neuronal individuality in mice and humans.

7.
EMBO J ; 41(17): e111118, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35919947

RESUMO

Organoids enable in vitro modeling of complex developmental processes and disease pathologies. Like most 3D cultures, organoids lack sufficient oxygen supply and therefore experience cellular stress. These negative effects are particularly prominent in complex models, such as brain organoids, and can affect lineage commitment. Here, we analyze brain organoid and fetal single-cell RNA sequencing (scRNAseq) data from published and new datasets, totaling about 190,000 cells. We identify a unique stress signature in the data from all organoid samples, but not in fetal samples. We demonstrate that cell stress is limited to a defined subpopulation of cells that is unique to organoids and does not affect neuronal specification or maturation. We have developed a computational algorithm, Gruffi, which uses granular functional filtering to identify and remove stressed cells from any organoid scRNAseq dataset in an unbiased manner. We validated our method using six additional datasets from different organoid protocols and early brains, and show its usefulness to other organoid systems including retinal organoids. Our data show that the adverse effects of cell stress can be corrected by bioinformatic analysis for improved delineation of developmental trajectories and resemblance to in vivo data.


Assuntos
Organoides , Transcriptoma , Algoritmos , Encéfalo , Biologia Computacional
8.
Science ; 370(6519): 935-941, 2020 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-33122427

RESUMO

Loss-of-function (LOF) screens provide a powerful approach to identify regulators in biological processes. Pioneered in laboratory animals, LOF screens of human genes are currently restricted to two-dimensional cell cultures, which hinders the testing of gene functions requiring tissue context. Here, we present CRISPR-lineage tracing at cellular resolution in heterogeneous tissue (CRISPR-LICHT), which enables parallel LOF studies in human cerebral organoid tissue. We used CRISPR-LICHT to test 173 microcephaly candidate genes, revealing 25 to be involved in known and uncharacterized microcephaly-associated pathways. We characterized IER3IP1, which regulates the endoplasmic reticulum (ER) function and extracellular matrix protein secretion crucial for tissue integrity, the dysregulation of which results in microcephaly. Our human tissue screening technology identifies microcephaly genes and mechanisms involved in brain-size control.


Assuntos
Encéfalo/crescimento & desenvolvimento , Proteínas de Transporte/fisiologia , Retículo Endoplasmático/metabolismo , Proteínas da Matriz Extracelular/metabolismo , Testes Genéticos/métodos , Proteínas de Membrana/fisiologia , Microcefalia/genética , Encéfalo/metabolismo , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Linhagem Celular , Linhagem da Célula , Técnicas de Inativação de Genes , Humanos , Proteínas de Membrana/genética , Tamanho do Órgão , Organoides/crescimento & desenvolvimento , Organoides/metabolismo
9.
J Cell Biol ; 219(1)2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31863584

RESUMO

Glucose transporter 4 (GLUT4) is sequestered inside muscle and fat and then released by vesicle traffic to the cell surface in response to postprandial insulin for blood glucose clearance. Here, we map the biogenesis of this GLUT4 traffic pathway in humans, which involves clathrin isoform CHC22. We observe that GLUT4 transits through the early secretory pathway more slowly than the constitutively secreted GLUT1 transporter and localize CHC22 to the ER-to-Golgi intermediate compartment (ERGIC). CHC22 functions in transport from the ERGIC, as demonstrated by an essential role in forming the replication vacuole of Legionella pneumophila bacteria, which requires ERGIC-derived membrane. CHC22 complexes with ERGIC tether p115, GLUT4, and sortilin, and downregulation of either p115 or CHC22, but not GM130 or sortilin, abrogates insulin-responsive GLUT4 release. This indicates that CHC22 traffic initiates human GLUT4 sequestration from the ERGIC and defines a role for CHC22 in addition to retrograde sorting of GLUT4 after endocytic recapture, enhancing pathways for GLUT4 sequestration in humans relative to mice, which lack CHC22.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Vias Biossintéticas , Cadeias Pesadas de Clatrina/metabolismo , Clatrina/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Transporte Proteico , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
10.
Nature ; 565(7740): 505-510, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30651639

RESUMO

The increasing prevalence of diabetes has resulted in a global epidemic1. Diabetes is a major cause of blindness, kidney failure, heart attacks, stroke and amputation of lower limbs. These are often caused by changes in blood vessels, such as the expansion of the basement membrane and a loss of vascular cells2-4. Diabetes also impairs the functions of endothelial cells5 and disturbs the communication between endothelial cells and pericytes6. How dysfunction of endothelial cells and/or pericytes leads to diabetic vasculopathy remains largely unknown. Here we report the development of self-organizing three-dimensional human blood vessel organoids from pluripotent stem cells. These human blood vessel organoids contain endothelial cells and pericytes that self-assemble into capillary networks that are enveloped by a basement membrane. Human blood vessel organoids transplanted into mice form a stable, perfused vascular tree, including arteries, arterioles and venules. Exposure of blood vessel organoids to hyperglycaemia and inflammatory cytokines in vitro induces thickening of the vascular basement membrane. Human blood vessels, exposed in vivo to a diabetic milieu in mice, also mimic the microvascular changes found in patients with diabetes. DLL4 and NOTCH3 were identified as key drivers of diabetic vasculopathy in human blood vessels. Therefore, organoids derived from human stem cells faithfully recapitulate the structure and function of human blood vessels and are amenable systems for modelling and identifying the regulators of diabetic vasculopathy, a disease that affects hundreds of millions of patients worldwide.


Assuntos
Membrana Basal/patologia , Vasos Sanguíneos/patologia , Angiopatias Diabéticas/patologia , Modelos Biológicos , Organoides/patologia , Organoides/transplante , Proteínas Adaptadoras de Transdução de Sinal , Secretases da Proteína Precursora do Amiloide/antagonistas & inibidores , Secretases da Proteína Precursora do Amiloide/metabolismo , Animais , Artérias/citologia , Artérias/efeitos dos fármacos , Arteríolas/citologia , Arteríolas/efeitos dos fármacos , Membrana Basal/citologia , Membrana Basal/efeitos dos fármacos , Vasos Sanguíneos/citologia , Vasos Sanguíneos/efeitos dos fármacos , Vasos Sanguíneos/crescimento & desenvolvimento , Proteínas de Ligação ao Cálcio , Angiopatias Diabéticas/enzimologia , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Humanos , Hiperglicemia/complicações , Técnicas In Vitro , Mediadores da Inflamação/farmacologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Camundongos , Organoides/citologia , Organoides/efeitos dos fármacos , Pericitos/citologia , Pericitos/efeitos dos fármacos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Receptor Notch3/metabolismo , Transdução de Sinais , Vênulas/citologia , Vênulas/efeitos dos fármacos
11.
EMBO J ; 35(22): 2386-2398, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27707753

RESUMO

Correct orientation of the mitotic spindle determines the plane of cellular cleavage and is crucial for organ development. In the developing cerebral cortex, spindle orientation defects result in severe neurodevelopmental disorders, but the precise mechanisms that control this important event are not fully understood. Here, we use a combination of high-content screening and mouse genetics to identify the miR-34/449 family as key regulators of mitotic spindle orientation in the developing cerebral cortex. By screening through all cortically expressed miRNAs in HeLa cells, we show that several members of the miR-34/449 family control mitotic duration and spindle rotation. Analysis of miR-34/449 knockout (KO) mouse embryos demonstrates significant spindle misorientation phenotypes in cortical progenitors, resulting in an excess of radial glia cells at the expense of intermediate progenitors and a significant delay in neurogenesis. We identify the junction adhesion molecule-A (JAM-A) as a key target for miR-34/449 in the developing cortex that might be responsible for those defects. Our data indicate that miRNA-dependent regulation of mitotic spindle orientation is crucial for cell fate specification during mammalian neurogenesis.


Assuntos
Córtex Cerebral/embriologia , MicroRNAs/metabolismo , Fuso Acromático/metabolismo , Animais , Células HeLa , Humanos , Camundongos , Camundongos Knockout
12.
Nat Commun ; 5: 3891, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24852344

RESUMO

The clathrin light chain (CLC) subunits participate in several membrane traffic pathways involving both clathrin and actin, through binding the actin-organizing huntingtin-interacting proteins (Hip). However, CLCs are dispensable for clathrin-mediated endocytosis of many cargoes. Here we observe that CLC depletion affects cell migration through Hip binding and reduces surface expression of ß1-integrin by interference with recycling following normal endocytosis of inactive ß1-integrin. CLC depletion and expression of a modified CLC also inhibit the appearance of gyrating (G)-clathrin structures, known mediators of rapid recycling of transferrin receptor from endosomes. Expression of the modified CLC reduces ß1-integrin and transferrin receptor recycling, as well as cell migration, implicating G-clathrin in these processes. Supporting a physiological role for CLC in migration, the CLCb isoform of CLC is upregulated in migratory human trophoblast cells during uterine invasion. Together, these studies establish CLCs as mediating clathrin-actin interactions needed for recycling by G-clathrin during migration.


Assuntos
Movimento Celular , Cadeias Leves de Clatrina/metabolismo , Endocitose , Trofoblastos/citologia , Actinas/metabolismo , Animais , Bovinos , Cadeias Pesadas de Clatrina/metabolismo , Feminino , Adesões Focais/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Integrina beta1/metabolismo , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Transfecção , Trofoblastos/metabolismo , Regulação para Cima , Cicatrização
13.
PLoS One ; 8(10): e77787, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24204966

RESUMO

Mobilization of the GLUT4 glucose transporter from intracellular storage vesicles provides a mechanism for insulin-responsive glucose import into skeletal muscle. In humans, clathrin isoform CHC22 participates in formation of the GLUT4 storage compartment in skeletal muscle and fat. CHC22 function is limited to retrograde endosomal sorting and is restricted in its tissue expression and species distribution compared to the conserved CHC17 isoform that mediates endocytosis and several other membrane traffic pathways. Previously, we noted that CHC22 was expressed at elevated levels in regenerating rat muscle. Here we investigate whether the GLUT4 pathway in which CHC22 participates could play a role in muscle regeneration in humans and we test this possibility using CHC22-transgenic mice, which do not normally express CHC22. We observed that GLUT4 expression is elevated in parallel with that of CHC22 in regenerating skeletal muscle fibers from patients with inflammatory and other myopathies. Regenerating human myofibers displayed concurrent increases in expression of VAMP2, another regulator of GLUT4 transport. Regenerating fibers from wild-type mouse skeletal muscle injected with cardiotoxin also showed increased levels of GLUT4 and VAMP2. We previously demonstrated that transgenic mice expressing CHC22 in their muscle over-sequester GLUT4 and VAMP2 and have defective GLUT4 trafficking leading to diabetic symptoms. In this study, we find that muscle regeneration rates in CHC22 mice were delayed compared to wild-type mice, and myoblasts isolated from these mice did not proliferate in response to glucose. Additionally, CHC22-expressing mouse muscle displayed a fiber type switch from oxidative to glycolytic, similar to that observed in type 2 diabetic patients. These observations implicate the pathway for GLUT4 transport in regeneration of both human and mouse skeletal muscle, and demonstrate a role for this pathway in maintenance of muscle fiber type. Extrapolating these findings, CHC22 and GLUT4 can be considered markers of muscle regeneration in humans.


Assuntos
Cadeias Pesadas de Clatrina/fisiologia , Clatrina/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Músculo Esquelético/citologia , Doenças Musculares/patologia , Regeneração/fisiologia , Animais , Estudos de Casos e Controles , Diferenciação Celular , Células Cultivadas , Glucose/metabolismo , Humanos , Immunoblotting , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas/citologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Mioblastos/citologia , Mioblastos/metabolismo , Transporte Proteico , Ratos
14.
Neuron ; 79(2): 254-65, 2013 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-23830831

RESUMO

In the developing neocortex, progenitor cells expand through symmetric division before they generate cortical neurons through multiple rounds of asymmetric cell division. Here, we show that the orientation of the mitotic spindle plays a crucial role in regulating the transition between those two division modes. We demonstrate that the protein phosphatase PP4c regulates spindle orientation in early cortical progenitor cells. Upon removing PP4c, mitotic spindles fail to orient in parallel to the neuroepithelial surface and progenitors divide with random orientation. As a result, their divisions become asymmetric and neurogenesis starts prematurely. Biochemical and genetic experiments show that PP4c acts by dephosphorylating the microtubule binding protein Ndel1, thereby enabling complex formation with Lis1 to form a functional spindle orientation complex. Our results identify a key regulator of cortical development and demonstrate that changes in the orientation of progenitor division are responsible for the transition between symmetric and asymmetric cell division.


Assuntos
Proliferação de Células , Neocórtex/embriologia , Neocórtex/enzimologia , Neurogênese/fisiologia , Fosfoproteínas Fosfatases/fisiologia , Fuso Acromático/enzimologia , Animais , Divisão Celular/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neocórtex/citologia , Células-Tronco Neurais/citologia , Células-Tronco Neurais/enzimologia , Gravidez
16.
J Cell Biol ; 188(1): 131-44, 2010 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-20065094

RESUMO

Clathrin heavy chain 22 (CHC22) is an isoform of the well-characterized CHC17 clathrin heavy chain, a coat component of vesicles that mediate endocytosis and organelle biogenesis. CHC22 has a distinct role from CHC17 in trafficking glucose transporter 4 (GLUT4) in skeletal muscle and fat, though its transfection into HEK293 cells suggests functional redundancy. Here, we show that CHC22 is eightfold less abundant than CHC17 in muscle, other cell types have variably lower amounts of CHC22, and endogenous CHC22 and CHC17 function independently in nonmuscle and muscle cells. CHC22 was required for retrograde trafficking of certain cargo molecules from endosomes to the trans-Golgi network (TGN), defining a novel endosomal-sorting step distinguishable from that mediated by CHC17 and retromer. In muscle cells, depletion of syntaxin 10 as well as CHC22 affected GLUT4 targeting, establishing retrograde endosome-TGN transport as critical for GLUT4 trafficking. Like CHC22, syntaxin 10 is not expressed in mice but is present in humans and other vertebrates, implicating two species-restricted endosomal traffic proteins in GLUT4 transport.


Assuntos
Cadeias Pesadas de Clatrina/metabolismo , Endossomos/metabolismo , Animais , Transporte Biológico , Linhagem Celular , Cadeias Pesadas de Clatrina/genética , Transportador de Glucose Tipo 4/metabolismo , Humanos , Camundongos , Mioblastos/metabolismo , Rede trans-Golgi/metabolismo
17.
Science ; 324(5931): 1192-6, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19478182

RESUMO

Intracellular trafficking of the glucose transporter GLUT4 from storage compartments to the plasma membrane is triggered in muscle and fat during the body's response to insulin. Clathrin is involved in intracellular trafficking, and in humans, the clathrin heavy-chain isoform CHC22 is highly expressed in skeletal muscle. We found a role for CHC22 in the formation of insulin-responsive GLUT4 compartments in human muscle and adipocytes. CHC22 also associated with expanded GLUT4 compartments in muscle from type 2 diabetic patients. Tissue-specific introduction of CHC22 in mice, which have only a pseudogene for this protein, caused aberrant localization of GLUT4 transport pathway components in their muscle, as well as features of diabetes. Thus, CHC22-dependent membrane trafficking constitutes a species-restricted pathway in human muscle and fat with potential implications for type 2 diabetes.


Assuntos
Adipócitos/metabolismo , Vesículas Revestidas por Clatrina/metabolismo , Clatrina/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Glucose/metabolismo , Músculo Esquelético/metabolismo , Adipócitos/citologia , Adipócitos/ultraestrutura , Animais , Glicemia/metabolismo , Diferenciação Celular , Linhagem Celular , Membrana Celular/metabolismo , Clatrina/química , Cadeias Pesadas de Clatrina , Humanos , Insulina/sangue , Insulina/farmacologia , Camundongos , Camundongos Transgênicos , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/ultraestrutura , Mioblastos/citologia , Mioblastos/metabolismo , Mioblastos/ultraestrutura , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Transporte Proteico , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA